
Econometrics Field Exam
Department of Economics, UC Berkeley

August 2023

Instructions:

• Answer all of the following questions.

• No books, notes, tables, or calculating devices are permitted.

• You have 180 minutes to answer all questions.

• Please make your answers elegant, that is, clear, concise, and, above all, correct.

[Question 1] Let (Y0, Y1) ∈ Y× Y = [0,∞)× [0,∞) be a random draw from a population
of “paired”durations; Y0 corresponds to the duration outcome of a control unit, while Y1 to
that of a treated unit. The conditional hazard functions for Y0 and Y1 are given by

λ (y0| a; θ) =λ0 (y0;α) eA. (1)

λ (y1| a; θ) =λ0 (y1;α) eβ+A,

withA unobserved, pair-specific-heterogeneity and λ0 (yt;α), for t = 0, 1, a known parametric
baseline hazard function indexed by the unknown parameter α. Your mission, should you
choose to accept it, is to compute a consistent estimate β. You may assume that θ = (α, β)′

equals its population value (i.e., θ = θ0) in what follows unless noted otherwise. Let Z =
(Y0, Y1)

′. We assume random sampling of pairs such that (Z1, A1) , . . . , (ZN , AN) are iid.
Let Λ0 (y;α) =

∫ y
0
λ0 (t;α) dt denote the integrated baseline hazard. Recall that the

conditional survival functions for the two durations can be written as

Pr (Y0 > y0|A = a; θ) = S (y0|A = a; θ) = exp (−Λ0 (y0;α) ea)

Pr (Y1 > y1|A = a; θ) = S (y1|A = a; θ) = exp
(
−Λ0 (y1;α) eβ+a

)
,

while the two duration densities can be written in terms of the hazard and survival functions
as

f (y0|A = a; θ) = λ (y0| a; θ)S (y0|A = a; θ)

f (y1|A = a; θ) = λ (y1| a; θ)S (y1|A = a; θ) .

(a) Consider the special case of a constant baseline hazard: λ0 (y;α) = α. Normalize α = 1
(so that the mean of eA is unrestricted) and show that the mean conditional duration
for control units is

E [Y0|A = a] = e−a

while that for treated units is

E [Y1|A = a] = e−β−a.
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You may find it helpful to recall that the density of an exponential random variable, Z,
with a rate parameter of λ at Z = z is λ exp (−zλ) with mean 1/λ and variance 1/λ2

(this hint is also useful below). From the above we get a conditional average treatment
effect (CATE) equal to

γ (a) = E [Y1 − Y0|A = a] = e−a
(
e−β − 1

)
(2)

and hence an average treatment effect (ATE) of

γ = E [Y1 − Y0] = E
[
e−A
] (
e−β − 1

)
.

Discuss any restrictions on treatment response imposed by (2). Why is the average
treatment effect declining in β?

(b) Show, conditional on A = a, that Y0 and Y1eβ are independent exponential random
variables with identical rate parameters of ea.

(c) Using the result in (b) show that

E
[
Y1e

β − Y0
∣∣A = a

]
= 0 (3)

for all a ∈ A and hence that E
[
Y1e

β − Y0
]

= 0 for any heterogeneity distribution.

(d) An omniscient econometrician is able to observe A for all units. Show that the opti-
mal estimating equation based solely on restriction (3) is (use what you know about
effi ciency bounds for conditional moment problems)

ψ (Z,A; β) =
1

2
eA
(
Y1e

β − Y0
)
. (4)

(e) You are not omniscient, but you a priori believe that eA ∼ Gamma (η, λ). Because
you are student of conjugate priors you also know that, according to your beliefs, a
posteriori,

E
[
eA
∣∣Y0, Y1] =

η + 2

Y0 + Y1eβ + λ
.

Since you don’t know A you replace it in (4) with your best guess given what you
believe a posteriori to be true about the world. This yields a moment function of

ψ (Z; β, η, λ) =
η + 2

2

(
Y1e

β − Y0
Y0 + Y1eβ + λ

)
. (5)

Show that this moment function is mean zero at β = β0 irrespective whether “your
subjective truth”is the “true objective truth”or “objectively false subjective truth”.
That is show that

E [ψ (Z; β0, η, λ)] = 0

for any η, λ and hence heterogeneity distribution for A.
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(f) Fix η, λ at some arbitrary values. Show that the method of moments estimate of β
based on (5) has a limit distribution of

√
N
(
β̂λ − β

)
→ N

(
0,Λ (β, λ)−1

)
(6)

where

Λ (β, λ) =
E
[

Y1eβ

Y0+Y1eβ+λ

(
1− Y1eβ−Y0

Y0+Y1eβ+λ

)]2
E
[(

Y1eβ−Y0
Y0+Y1eβ+λ

)2] . (7)

Note that neither β̂λ, nor its limit distribution, depends on η. Suggest an approach for
choosing λ in practice? Is there a best choice? Worst choice?

(g) Your friends in the CLE courteously suggest to you that your focus on estimating β is
comically misguided. They note that the ATE may be directly estimated by

γ̂ =
1

N

N∑
i=1

(Yi1 − Yi0) .

You instead suggest an estimate of

γ̂λ =
1

2N

N∑
i=1

(
Y0i + Y1ie

β̂λ

)(
e−β̂λ − 1

)
.

Discuss how you would explain your alternative estimation approach to your colleague.
Comment on possible advantages and disadvantages of your approach.
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[Question 2] Suppose {yt : 1 ≤ t ≤ T} is an observed time series generated by the model

yt = µ+ ut, ut = ρut−1 + εt, t = 1, . . . , T,

where u0 = 0 and εt ∼ i.i.d. N (0, 1), while ρ ∈ (−1, 1) is a parameter of interest and µ ∈ R
is a (possibly) unknown nuisance parameter.

(a) Find the log likelihood functionL(µ, δ) and, form ∈ R, derive ρ̂(m) = arg maxρ L(ρ,m),
the maximum likelihood estimator of ρ when µ is assumed to equal m.

(b) Find the limiting distribution (after appropriate centering and rescaling) of the “oracle”
estimator ρ̂(µ).

(c) Give conditions on µ̂ under which ρ̂(µ̂) asymptotically equivalent to ρ̂(µ).

Let

µ̂OLS = T−1
T∑
t=1

yt.

(d) Does µ̂OLS satisfy the condition derived in (c)? If not, determine whether ρ̂(µ̂OLS) is
asymptotically equivalent to ρ̂(µ).
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[Question 3] Consider a policy learning problem with data vector W = (X,D, Y ). Here,
D ∈ {1, 0} is a binary treatment, X is a vector of baseline (pre-treatment) covariates, Y (1)
is an outcome when treated and Y (0) is an outcome when non-treated, respectively, and

Y = DY (1) + (1−D)Y (0)

is realized outcome. The policy classifier G : X → {1, 0} maps a vector of observables X to
a policy prescription {1, 0} (treat, not treat). The average welfare of the classifier G is given
by

W (G) = EY (1)1{X ∈ G}+ EY (0)1{X ∈ Gc},
where Gc is a complement of G, that is G tGc = X .

(a.i) Derive the optimal classifier

G∗ = arg min
all classifiers

W (G)

(a.ii) Calculate the optimal value of welfare W (G∗).

(b) Prove that the optimal classifier G∗ is indeed optimal. That is, show that any other
policy classifier G : X → {1, 0} attains a non-negative regret

R(G) = W (G)−W (G∗) ≥ 0.

(c) Let (Xi, Di, Yi)
n
i=1 be an i.i.d sample. Sketch an Empirical Welfare Maximization

(EWM) policy classifier.

(d) Let (Xi, Di, Yi)
n
i=1 be an i.i.d sample. Consider the regression functions

E[Y = 1 | D = d,X = x] = x′θd, d ∈ {1, 0}.

where x is a high-dimensional sparse vector:

dim(x) = p� n, max
d∈{1,0}

‖θd‖0 = s� n.

Sketch a possible plug-in classifier, appropriate for this setup.

(e) Given an i.i.d sample of (Xi, Di, Yi)
n
i=1, sketch a possible DML estimator of the optimal

average welfare W (G∗). Specifically,

• Write a definition of W (G∗) and identify the nuisance functions that it depends
on.

• Write down an orthogonal moment equation for W (G∗). Explain why this equa-
tion is likely to be less sensitive to the biased estimation of its functions than the
one defined above.

• Sketch a Double Machine Learning estimator of W (G∗).
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