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Please choose three questions to answer. Please use a separate blue book for each an-
swered question. Write your name on each blue book. Answer as completely as you are able.
Good luck!

[Q1] A dependent variable yi is generated by a linear regression equation

yi = x′iβ0 + εi,

given an observed p-dimensional regression vector xi, unobserved error term εi, and unknown
coefficient vector β0. The errors εi are assumed to be independent of xi with density function
f(ε) that is assumed to be positive everywhere, uniformly bounded, and smooth (i.e., lots
of continuous derivatives), and has zero median, i.e.

Pr{εi ≤ 0} = 1/2.

Given a random sample of size N from this model, consider a penalized version of the
usual LAD estimator:

β̂ = argmin
b∈Rp

PN(β)

≡ argmin
b∈Rp

((
1

N

N∑
i=1

|yi − x′ib|

)
+

1

2N
(b− δ0)

′A0(b− δ0)

)

≡ argmin
b∈Rp

(
SN(b) +

1

2N
(b− δ0)

′A0(b− δ0)

)
,

where SN(b) is the usual LAD criterion function and δ0 is a known ”prior guess” of the
unknown β0 and A0 is a known, positive-definite weight matrix.

(a) Under what additional conditions (if any) will β̂ be consistent for β0?
(b) Assume that the usual ”approximate first-order condition”

√
N
∂−PN(β̂)

∂b
= op(1),

where ∂−PN(b)/∂b is the subgradient of PN(b). Also assume the following ”approximate
mean-value expansion” holds:

√
N
∂−SN(β̂)

∂b
=

√
N
∂−SN(β0)

∂b
+H0

√
N(β̂ − β0) + op(1),

where H0 is the appropriate ”Hessian” matrix for LAD regression, assumed invertible. Under
these additional restrictions, derive the form of the asymptotic distribution of β̂, assuming
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it is consistent for β0. You need not check regularity conditions, but please make your ex-
pressions as explicit as possible (including the correct expression for H0).

(c) Now suppose the penalized estimator β̂ is defined as

β̂ = argmin
b∈Rp

QN(β)

≡ argmin
b∈Rp

((
1

N

N∑
i=1

|yi − x′ib|

)
+

1

2
√
N
(b− δ0)

′A0(b− δ0)

)

≡ argmin
b∈Rp

(
SN(b) +

1

2
√
N
(b− δ0)

′A0(b− δ0)

)
,

i.e., the original penalty term is multiplied by
√
N. Under what additional conditions (if

any) will β̂ be consistent for β0?
(d) Again assuming that

√
N
∂−QN(β̂)

∂b
= op(1),

where ∂−QN(b)/∂b is the subgradient of QN(b), and that

√
N
∂−SN(β̂)

∂b
=

√
N
∂−SN(β0)

∂b
+H0

√
N(β̂ − β0) + op(1),

derive the form of the asymptotic distribution of β̂, assuming β̂ is consistent for β0.

[Q2] Let {Ri}Ni=1 be a simple random sample of the 1 × 3 vector Ri = (Xi, Yi, Zi) .
We assume that

Yi = Ziβ0 + Ui, E [Ui|Xi] = 0, (1)

with Zi ∈ {0, 1} binary and

Pr (Zi = 1|Xi = x) = Φ (xγ0) (2)

with Φ (·) the cumulative distribution function of a standard normal. You may assume that
other “standard” regularity conditions hold as well.

Consider the following two-step estimation procedure. First, apply maximum likelihood

to the probit model (2), obtain γ̂ and construct Ẑi

def
≡ Φ (Xiγ̂) for i = 1, . . . , N . Second,

compute the least squares fit of Yi onto Ẑi:

β̂TS =

∑N
i=1 YiẐi∑N
i=1 Ẑ

2
i

. (3)

This procedure is analogous two-stage least squares, with the first stage based upon the
probit instead of the linear probability model.

(a) Construct a moment function

ψ (R, γ, β) =

[
ψ1 (R, γ)
ψ2 (R, γ, β)

]
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such that the corresponding method-of-moments estimate of (γ0, β0), i.e., the solution to

N∑
i=1

ψ
(
Ri, γ̂, β̂TS

)
= 0,

is identical to that of the two step procedure described above.
(b) Verify that your moment function is valid, in the sense that

E [ψ (R, γ0, β0)] = 0.

(c) Consider the alternative, infeasible, one-step estimator β̂OS which replaces Ẑi in

(3)with the true conditional probability Z0i

def
≡ Φ (Xiγ0) . Compare the asymptotic variances

of β̂TS and β̂OS. Provide a characterization of the efficiency loss, if any, associated with
having to estimate γ0.

(d) Now assume that (2) is no longer valid (i.e., that the probit first stage is mis-
specified such that there is no γ0 such that (2) holds for all x ∈ X). For example it might
be that

Pr (Zi = 1|Xi = x) = Φ
(
xγ0 + x2δ0

)
.

Is the two-step estimator consistent under misspecification of the first stage (in general)?
Explain.

(e) Consider the two-step instrumental variables estimator with ψ1 (R, γ) as in part
(a) above, but now

ψ2 (Ri, γ, β) = (Yi − Ziβ) Φ (Xiγ) .

Does consistency of this estimator require both (1) and (2) or just the former or just the
latter? Explain.

(f) Consider a second instrumental variables estimator with

ψ2 (Ri, γ, β) = (Yi − Ziβ)Xi

and ψ1 (R, γ) as in part (a) above. Assume that V (Ui|Xi = x) = σ2 for all x ∈ X. Would
you (generally) expect that the estimate of β0 from part (e) to be more precisely, or less
precisely, determined than the one based on the above moment function? Explain.

[Q3] Suppose {yt : 1 ≤ t ≤ T} is an observed strictly stationary time series generated
by the (AR(1)) model

yt =
∞∑
i=0

ϕiεt−i,

where ϕ ∈ (−1, 1) and εt ∼ i.i.d. N (0, 1).
As estimators of θ = ϕ2 ∈ [0, 1), consider

θ̂ = ϕ̂2, ϕ̂ =

∑T
t=2 yt−1yt∑T
t=2 y

2
t−1

,

θ̃ =

∑T
t=3 yt−2yt∑T
t=3 y

2
t−2

,
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and
θ̌ = max(θ̃, 0).

It can be shown that, for k ∈ {1, 2},

1

T

T∑
t=k+1

y2t−k →p E
(
y2t−k

)
and

1√
T

T∑
t=k+1

yt−k(yt − ϕkyt−k) →d N

(
0, limT→∞ V ar

[
1√
T

T∑
t=k+1

yt−k(yt − ϕkyt−k)

])
.

(a) Find the limiting distribution (after appropriate centering and rescaling) of θ̂.
(b) Find the limiting distribution of θ̃.
(c) Find the limiting distribution of θ̌.
(d) Rank the estimators from (a)-(c) in terms of (asymptotic) efficiency.

[Q4] Suppose {yt : −1 ≤ t ≤ T} is an observed strictly stationary time series gener-
ated by the (AR(1)) model

yt = εt + θ0εt−1,

where θ0 ∈ (−1, 1) and εt ∼ i.i.d. N (0, 1).
(a) Let xt = (yt, yt−1, yt−2)

′ and define the function

h(xt, θ) =

[
yt−1yt − θ
yt−2yt

]
.

Show that Θ = {θ0}, where Θ = {θ : E[h(xt, θ)] = 0}.
Let

θ̂W = argminθ gT (θ)
′WgT (θ), gT (θ) =

1

T

T∑
t=1

h(xt, θ),

where W is a symmetric, positive definite 2× 2 matrix.
It can be shown that

1√
T

T∑
t=1

h(xt, θ0) →d N

(
0, limT→∞ V ar

[
1√
T

T∑
t=1

h(xt, θ0)

])
.

(b) It can be shown that

√
T (θ̂W − θ0) →d N (0, ω2

W ),

where ω2
W is some function of ϕ0 and W. Verify this claim and express ω2

W in terms of θ0 and
W.

(c) Find W ∗, a value of W for which ω2
W is minimal, and express ω2

W ∗ in terms of θ0.
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(d) Propose a feasible estimator θ̂ (i.e., an estimator θ̂ that can be computed without
knowledge of θ0) satisfying

√
T (θ̂ − θ0) →d N (0, ω2

W ∗).
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